Chemical Properties of Carbon Compounds


LearnNext Lesson Video

 Carbon compounds undergo different types of chemical reactions.

•Thermal cracking.

All carbon compounds react with oxygen to produce heat and light along with carbon dioxide and water. This reaction of carbon with oxygen is called combustion.

Carbon Compound + Oxygen → Carbon dioxide + water + heat and light
CH4 + 2O2 → CO2 + 2H2O + Heat and light.
        •  Aliphatic compounds on combustion produce a non-sooty flame.
        •  Aromatic compounds on combustion produce sooty flame.

Alcohols undergo oxidation in presence of oxidising agents like alkaline potassium permanganate 
or acidified potassium dichromate to form carboxylic acids. 
Ethyl alcohol on oxidation with alkaline potassium permanganate or acidified potassium dichromate gives acetic acid.
             CH3-CH2-OH    Alkaline KMnO 4 or Acidified K 2 Cr 2 O 7   CH3-COOH

Addition reaction:
A chemical reaction is said to be an  addition reaction if two substances combine and form a third substance. In general unsaturated hydrocarbons like alkenes and alkynes prefers to undergo addition reactions. 
In addition reactions molecules add across double bond or triple bond.  
Hydrogenation reaction involves the addition of hydrogen to unsaturated hydrocarbons in presence of catalyst like nickel or platinum to form saturated hydrocarbons.
Addition of hydrogen to ethene

Addition of hydrogen ethyne.
 CH ≡ CH + 2H2         Ni or Pt          CH3-CH3

Addition of halogens to alkenes.
CH= CH2 + X2 → CH2X - CH2

Similar to alkenes, addition reactions are also characteristic of alkynes. 
Ethyne reacts readily with hydrogen in the presence of a suitable catalyst to form ethene, an intermediate and then adds another hydrogen molecule to give ethane.
                 CHΞCH + H2 + (Catalyst) → CH2=CH2 + H2 → CH3-CH3

Halogens, especially chlorine, react readily with alkynes to produce tetra-halogen derivatives.

The addition of one molecule of chlorine to ethyne produces 1,2-dichloroethene. The product obtained contains a carbon-carbon double bond and can further add one molecule of chlorine thus yielding a tetra halogen derivative, 1,1,2,2-tetrachloroethane.
CHΞCH + Cl2 → CH(Cl)=CH(Cl) + Cl2 → CH(Cl2)-CH(Cl2)

Addition of unsymmetrical reagents:
When unsymmetrical reagents like HCl, HBr or H2O across the double bond in such a way that one part of the molecule attaches itself to one carbon of the double bond, while the other part of the molecule attaches itself to the other carbon of the double bond.

Ethene on reaction with HCl, produces chloroethane.
                     CH2=CH2 + HCl → CH3-CH2Cl

The addition product of ethene and HBr is bromoethane.
                    CH2=CH2 + HBr → CH3-CH2Br

Substitution reaction:
A reaction in which an atom or group of atoms replaces another atom or group of atoms is called substitution reaction. Alkanes undergo substitution reactions. 
Chlorination of methane in presence of sunlight gives a mixture of products like methyl chloride, 
methylene chloride, chloroform and carbon tetrachloride.
CH4 + Cl2      Sunlight       CH3Cl + HCl
CH3Cl+Cl2         Sunlight        CH2Cl2 + HCl
CH2Cl2+Cl2       Sunlight        CHCl3+HCl
CHCl3+Cl2       Sunlight         CCl4+HCl

Polymerization reaction:
Alkenes and alkynes at higher temperatures under polymerization to form bigger molecules called as polymers.
Ethene at 400 °C undergoes polymerization to form polyehene.

nCH= CH2 → [-CH-CH- CH- CH2-]n

The polymer is usually named by adding the word “poly” to the name of the monomer. Thus, the polymer of ethene is named polyethene or polythene.

A variety of industrially important polymers are obtained by using substituted ethenes in place of ethene.
Propene gives polypropene on polymerisation.

Chloroethene, commonly known as vinyl chloride, yields poly vinyl chloride or PVC, on polymerisation.
(Teflon) Tetra fluoro ethene, on polymerisation, yields poly tetra fluoro ethene, commonly known as Teflon.

Applications of polymers:
Polythene, polypropene and PVC are common plastics widely used to make plastic bags, bottles, electrical insulation, pipes and many more things.
Teflon is used in the manufacture of non-stick cookware.

When hydrocarbons of high molecular masses are heated to high temperatures under high pressures, they decompose, forming hydrocarbons of lower molecular masses. This breaking up of large hydrocarbon molecules into smaller at high temperatures is known as thermal cracking. The hydrocarbon molecules are broken up in a fairly random way to produce mixtures of smaller hydrocarbons.

The products of thermal cracking depend upon the nature of the hydrocarbon, temperature, pressure, and the catalyst used. Thermal cracking of decane gives hexane and butene. 
              C10H22           Cracking at 600 - 700          C6H14  +  C4H8

Videos arrow_upward

Activities & Simulations

Activity1 has created a wonderful animation on "Combustion Reaction". This video gives the clear information about combustion of carbon and methane with oxygen and also explains combustible and non - combustible substances.
Go To Activity

Activity 2 has created an animated video on " Hydrogenation of Alkene ". This video explains about the addition reactions of alkenes. This video imprints how alkene and hydrogen molecules reacts on the surface of catalyst in the student mind. 
Go To Activity

Activity 3 has created student interactive video on "Substitution Reaction of Methane". This activity explains how methane and chlorine molecules react in the presence of light. This is a student friendly animation because here student should select the reactant molecules and monitor the reaction. Student can analyses how the in increase in collision between molecules will increase the reaction.
Go To Activity

Activity 4 has created an interactive video on "Oxidation of Alcohols". This is a quiz based video. The questions are very sensible and help to increase the application knowledge of the students.
Go To Activity

1 . Given a chemical test to distinguish between (i) Ethane and ethene (ii) Ethanol and ethanoic acid (iii) Soaps and Detergents

Ans: ( i) Ethane and ethene:
Then,  addition of bromine water to both alkane and alkene. In whic...

2 . How does the tendency to gain electrons change as we go down the 16thgroup of periodic table? Why?

when we go down the 16th group of the periodic table,the tendency to gain electrons goes on decreasing. because when we go down in the 16th...

3 . What is power alcohol? How it is differ from absolute alcohol?


Mixture of alcohol and petrol in 20: 80 ratio is called power alcohol.In general it is used in stoves and spirit la


4 . Write three difference between ethanol and ethanoic acid on the basis of chemical properties?

Ans: Ethanol Ethanoic acid The functional group in ethanol is -OH alcohol. And functional group in ethanoic acid is ?COOH carboxylic ac...

5 . In electrolysis of water, why is the volume of gas collected over one electrode double the volume of gas collected over the other electrode?


4H + O2 = 2H2O Since atoms in hydrogen are souble rhan that of oxygen therefore volume of gas collected in one elect...