Notes On Concept of Infinity - CBSE Class 12 Maths
The nature of the function f(x) = $\frac{\text{1}}{\text{x}}$ = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$     x   1   0.5   0.2   0.1=10-1   0.01=10-2   â€¦   10-n   f(x)   1   2   5   10 = 101   100 = =102   â€¦   10n â‡’ For a positive real number very close to 0, the value of the function will be a large number. = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$ = + âˆž â‡’ Right hand limit of f(x) at 0 does not exist. = $\underset{xâ†’{\text{0}}^{\text{â€“}}}{\text{lim}}\frac{\text{1}}{\text{x}}$   x   - 1   - 0.5   - 0.2   -10-1   10-2   â€¦   -10-n   f(x)   - 1   - 2   - 5   -101   -102   â€¦   -10n â‡’ For a negative real number very close to 0, the value of the function will be a very small number. = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$ = â€“ âˆž â‡’ Left hand limit of f(x) at 0 does not exist. The nature of the function f(x) = tan x   xo   tan xo   0Â°   0   45Â°   1.0000   60Â°   1.7320   85Â°   11.4300   89Â°   57.2899   89.9Â°   572.9572   89.99Â°   5729.5778   89.999Â°   57295.7795   89.9999Â°   572957.7951   90Â°   Infinity â‡’ For an angle very close to 90Â° from the left side, the value of the function will be a large number. This number is represented by + âˆž. = = + âˆž   xo   tan xo   180Â°       0   150Â°   - 0.5773   120Â°   - 1.7320   100Â°   - 5.6712   91Â°   - 57.2899   90.1Â°   - 572.9572   90.01Â°   - 5729.5778   90.001Â°   - 57295.7795   90.0001Â°   - 572957.7951   90Â°   Infinity â‡’ For an angle very close to 90Â° from the right side, the value of the function will be a small number. This number is represented by â€“ âˆž. = = â€“ âˆž

Summary

The nature of the function f(x) = $\frac{\text{1}}{\text{x}}$ = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$     x   1   0.5   0.2   0.1=10-1   0.01=10-2   â€¦   10-n   f(x)   1   2   5   10 = 101   100 = =102   â€¦   10n â‡’ For a positive real number very close to 0, the value of the function will be a large number. = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$ = + âˆž â‡’ Right hand limit of f(x) at 0 does not exist. = $\underset{xâ†’{\text{0}}^{\text{â€“}}}{\text{lim}}\frac{\text{1}}{\text{x}}$   x   - 1   - 0.5   - 0.2   -10-1   10-2   â€¦   -10-n   f(x)   - 1   - 2   - 5   -101   -102   â€¦   -10n â‡’ For a negative real number very close to 0, the value of the function will be a very small number. = $\underset{xâ†’{\text{0}}^{\text{+}}}{\text{lim}}\frac{\text{1}}{\text{x}}$ = â€“ âˆž â‡’ Left hand limit of f(x) at 0 does not exist. The nature of the function f(x) = tan x   xo   tan xo   0Â°   0   45Â°   1.0000   60Â°   1.7320   85Â°   11.4300   89Â°   57.2899   89.9Â°   572.9572   89.99Â°   5729.5778   89.999Â°   57295.7795   89.9999Â°   572957.7951   90Â°   Infinity â‡’ For an angle very close to 90Â° from the left side, the value of the function will be a large number. This number is represented by + âˆž. = = + âˆž   xo   tan xo   180Â°       0   150Â°   - 0.5773   120Â°   - 1.7320   100Â°   - 5.6712   91Â°   - 57.2899   90.1Â°   - 572.9572   90.01Â°   - 5729.5778   90.001Â°   - 57295.7795   90.0001Â°   - 572957.7951   90Â°   Infinity â‡’ For an angle very close to 90Â° from the right side, the value of the function will be a small number. This number is represented by â€“ âˆž. = = â€“ âˆž

Next
âž¤